首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11263篇
  免费   810篇
  国内免费   548篇
工业技术   12621篇
  2024年   12篇
  2023年   178篇
  2022年   277篇
  2021年   315篇
  2020年   335篇
  2019年   265篇
  2018年   345篇
  2017年   405篇
  2016年   420篇
  2015年   368篇
  2014年   545篇
  2013年   712篇
  2012年   760篇
  2011年   1022篇
  2010年   633篇
  2009年   655篇
  2008年   629篇
  2007年   648篇
  2006年   632篇
  2005年   497篇
  2004年   446篇
  2003年   408篇
  2002年   320篇
  2001年   271篇
  2000年   233篇
  1999年   173篇
  1998年   152篇
  1997年   116篇
  1996年   140篇
  1995年   127篇
  1994年   102篇
  1993年   87篇
  1992年   83篇
  1991年   64篇
  1990年   41篇
  1989年   49篇
  1988年   42篇
  1987年   24篇
  1986年   17篇
  1985年   17篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   5篇
  1975年   3篇
  1974年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(15):21268-21282
Mullite-Al2O3-SiC composites were in-situ synthesized through carbothermal reduction reaction of fly ash (FA) with a high alumina content and activated carbon (AC). The effects of sintering temperature, holding time, and amount of AC on the β-SiC yield, microstructure, dielectric properties, and electromagnetic (EM) absorption performance of the composites in the 2–18 GHz frequency range were studied. The results show that increasing the AC improves the porosities of the composites, with the highest porosity of 56.17% observed. The β-SiC yield varies considerably as the sintering parameters were altered, with a maximum yield of 23% achieved under conditions of 12 wt% AC, 1400 °C sintering temperature, and 3 h holding time. With a thickness of 3.5 mm, this composite has excellent EM absorption performance, exhibiting a minimum reflection loss (RLmin) of -51.55 dB at 7.60 GHz. Significantly, the maximum effective absorption bandwidth (EAB) reaches 3.39 GHz when the thickness is 3.0 mm. These results demonstrate that the composite prepared under ideal conditions can absorb 99.99% of the waves passing through it. Because of the interfacial polarization, conductive loss, and impedance matching of the heterostructure, the synthesized mullite-Al2O3-SiC composites with densities ranging from 1.43 g/cm3 to 1.62 g/cm3 demonstrate outstanding EM attenuation capabilities. Therefore, this study presents a remarkable way of utilizing fly ash to fabricate inexpensive, functional ceramic materials for EM absorption applications.  相似文献   
2.
《Ceramics International》2022,48(8):11064-11073
CaCu3Ti3.925(Nb0.5Al0.5)0.075O12 [CCTNAO] ceramics were synthesized by microwave assisted solid state reaction technique. CCTNAO ceramics possessed room temperature (RT) dielectric constant (εr) ~ 24,173 with tanδ ~0.149 at 1 kHz frequency. Commercially available epoxy-resin, hardener, Al-powder along with CCTNAO powder were used to prepare epoxy based 0–3 composites. Maximum εr ~33.37 with tanδ ~0.107 at RT were obtained for 40 vol% CCTNAO loading in epoxy. For x = 0.2 in (1-x)[0.8 Epoxy-0.2 CCTNAO]-x Al Epoxy composites, highest εr ~77.6 with tanδ ~ 0.15 at 1 kHz frequency were observed. Increase in εr with the increase of Al filler content in composites is attributed to interfacial polarization and cluster formations. Different theoretical models were discussed to explain the dielectric properties of synthesized composites. Experimentally measured values of εeff were in close agreement with EMT model (n = 0.13) and Yamada Model (η = 7). An empirical proposed power law εeff = εm(1+x)n, with n ~ 10 had a considerable agreement with the experimental results. Vickers hardness test study was carried out to ascertain the mechanical properties of the synthesized composites.  相似文献   
3.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
4.
《Ceramics International》2022,48(22):33177-33184
The rare earth (Yb3+) substituted W-type hexagonal ferrites with composition CaPb2-xYbxFe16O27 (x = 0.0, 0.5, 1.0, 1.5, 2.0) were synthesized by a facile and cost-effective sol-gel auto combustion method with post heat treatment. The synthesized hexagonal ferrites were characterized by a variety of analytical techniques, and an impedance analyzer was used to investigate the effects of Ytterbium on structural, magnetic, spectral and dielectric properties. The relationship between their impedance, structure and dielectric properties was investigated. The X-ray diffraction patterns verify the presence of single-phase W-type hexagonal ferrites. Physical properties such as Dbulk (bulk density), Dxrd (X-ray density), and P (porosity) of the CaPb2-xYbxFe16O27 W-type hexagonal ferrites were calculated. The bulk density of all the samples was decreased, and X-ray intensity was increased with the Ytterbium replacement in the W-type hexaferrite. By adding Yb3+ ions, the lattice parameters, cell volume and X-ray density were reduced due to the substitution of ytterbium with smaller ionic radii compared to the lead ion with large ionic radii. The AC-conductivity was increased from (1.523 × 10?5 to 6.699 × 10?5) Ωcm?1. The dielectric constant and tangent loss was found to decrease substantially. The magnetic properties were found to enhance by the substitution of Yb3+. The low coercivity value of Yb3+ substituted W-type hexagonal ferrites are suitable for magnetic recording media operated at a high-frequency regime. The enhancement of electrical, dielectric and magnetic characteristics suggests these materials as promising for multi-layer chip inductors (MLCIs) circuit applications.  相似文献   
5.
《Ceramics International》2022,48(24):36802-36813
X-type samarium-cadmium co-substituted hexaferrite with compositions Ba2-xSmxCo2CdyFe28-yO46 (0.00 ≤ x ≤ 0.08, and 0 ≤ y ≤ 0.4) were prepared at 1340 °C using a simple heat treatment technique. All heated samples were characterized using FTIR, XRD, SEM, VSM, M?ssbauer, and low-frequency dielectric measurements. XRD analysis of prepared samples shows the formation of X as a major phase along with hematite. The MS value varied from 67.01 Am2/kg to 50.43 Am2/kg; whereas the Hc value changed from 2.95 kA/m to 6.17 kA/m, A high value of MS (67.01 Am2/kg) is observed in the pure sample, and a very low value of Hc (2.95 kA/m) is observed for x = 0.06, y = 0.3 compositions, but Mr/Ms < 0.5 confirm the multi-domain nature of prepared hexaferrites. Hysteresis loops of all samples are narrow, and confirmed that formed samples belong to magnetically soft. Mössbauer spectra of the three samples (S1, S3, and S5) show the existence of doublets. Significantly low values of coercivity, retentivity, and loss tangent in Sm–Cd substituted samples signified those prepared materials can be used to design electromagnets, transformer cores, electric motors, and maybe a potential candidate for lossless low-frequency applications.  相似文献   
6.
(Ta2O5)1-x- (TiO2)x (TTOx) thin films, with x = 0, 0.03, 0.06, 0.08, and 0.11, were deposited using magnetron direct current (DC) sputtering method onto the P/boron-silicon (1 0 0) substrates by varying areas of Tantalum and Titanium metallic targets, in oxygen environment at ambient temperature. The as-deposited thin films were annealed at temperatures ranging from 500 to 800 °C. Generally, the formation of the Ta2O5 structure was observed from the X-ray diffraction measurements of the annealed films. The capacitance of prepared metal– oxide– semiconductor (MOS) structures of Ag/TTOx/p-Si was measured at 1 MHz. The dielectric constant of the deposited films was observed altering with varying composition and annealing temperature, showing the highest value 71, at 1 MHz, for the TTOx films, x = 0.06, annealed at 700 °C. With increasing annealing temperature, from 700 to 800 °C, the leakage current density was observed, generally decreasing, from 10?5 to 10?8 A cm?2, for the prepared compositions. Among the prepared compositions, films with x = 0.06, annealed at 800 °C, having the observed value of dielectric constant 48, at 1 MHz; and the leakage current density 2.7 × 10?8 A cm?2, at the electric field of 3.5 × 105 V cm?1, show preferred potential as a dielectric for high-density silicon memory devices.  相似文献   
7.
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40−48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6–40 % isolated yield, which compares favorably to established chemical routes.  相似文献   
8.
《Ceramics International》2022,48(14):20134-20145
M-type calcium hexaferrite- CaFe12O19 (CaM) has been prepared in presence of Azadirachta indica, and Murraya koenigii leaves extracts, followed by calcination at 650 °C for 3h. It was observed that the presence of phytochemicals in both leaves extract plays a vital role in deciding the structural, optical, microstructural, magnetic, and dielectric properties of prepared CaM hexaferrites. Prepared samples were characterized using FT-IR, XRD, UV–Vis, SEM, VSM, and dielectric measurements. FTIR, UV– Vis, and antioxidant assay confirmed the presence of phenolic content and antioxidant property of plant extract. This further resulted in the formation of a pure hexagonal phase as revealed by the XRD analysis. The surface morphology of prepared ferrites modified through this greener route was illustrated by the spongy appearance of ferrites in SEM micrographs.The saturation magnetization for the CaM powder prepared using Murraya koenigii leaves extract is 11.78 Am2/kg, while that prepared from Azadirachta indica leaves extract is 3.56 Am2/kg. Both samples show a magnetically soft nature, with a multidomain structure. The energy bandgap was also observed to be 2.01 eV. Moreover, the calcium ferrite synthesized by Murraya koenigii leaves had εmax ~ 25 and that synthesized in presence of Azadirachta indica leaves had εmax ~ 200 at ~20 Hz.  相似文献   
9.
In this paper, a novel H2Ti2O5@MoS2@SiO2 ternary composite material was prepared by a combination of dual hydrothermal method and controlled hydrolysis method, in which H2Ti2O5 nanotubes are tightly combined with hierarchical molybdenum disulfide, and the unique structure of titanate nano whiskers, including the loosely bound alkali metal ions between the titanate layers with high dielectric constant and the large aspect ratio, which induce active response to the electric field. Flower-like molybdenum disulfide provides electrical conductivity, and silicon dioxide as a insulative coating layer can suppress excessive the electrical conductivity of the two-dimensional material. The morphological evolution was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of showed that the sheet-shaped molybdenum disulfide coated with curved H2Ti2O5 nanotubes showed a honeycomb structure with uniform size. Silicon oxide acts as a cladding layer to increase the thickness of the flakes. The existence of H2Ti2O5, molybdenum disulfide and silicon dioxide is confirmed by X-ray powder diffractometer (XRD) and Fourier transform infrared spectroscopy (FT-IR). The prepared product was confirmed by XPS, BET test and electrorheological rheometer. Core/shell nanoparticles not only exert the active response characteristics of titanate nanoparticles and molybdenum disulfide to electric field, but also inherit the excellent characteristics of a core-shell structure produced by the interface polarization and the synergistic effect of the polar groups on the surface of the two-dimensional material further enhance the electrorheological effect.  相似文献   
10.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号